

Thermal Energy Storage Systems Engineering

Harvey Arellano-Garcia

Chair – Process and Systems Engineering Institute of Process and Material Sciences

Seminar - Energy Systems Initiative at CAPD, December 04, 2023

arellano@b-tu.de

https://doi.org/10.1016/j.renene.2022.06.015

Brandenburg

University of Technology

From sunlight and desert sand to a sustainable society

Thermochemical hydrogen storage: Redox reactor

Energy storage as metal ammine complexes

Available online at www.sciencedirect.com

ScienceDirect

Energy Procedia 69 (2015) 802 - 811

International Conference on Concentrating Solar Power and Chemical Energy Systems,

Gravity-fed combined solar receiver/storage system using sand particles as heat collector, heat transfer and thermal energy storage media

SolarPACES 2014

A. Crespo Iniesta ^a, M. Diago ^a, T. Delclos ^a, Q. Falcoz ^b, T. Shamim ^a, and N. Calvet ^a.*

^a Institute Center for Energy (iEnergy), Department of Mechanical & Materials Engineering, Masdar Institute of Science & Technology, Masdar City, P.O.: Box 54224, Abu Dhabi, United Arab Emirates. ^b PROMES – CNRS Laboratory, 7 rue du Four Solaire, 66120 Font Romeu Odeillo, France.

Representative TES material requirements.

	Solar salt	Dune sand
Price (\$/kg)	0.43	0.05 (quartz sand)
Density (kg/m ³)	2000	1500
Specific heat capacity (J kg ⁻¹ K ⁻¹)	1500	1000
Temperature range (°C)	290-565	290-1000
Mass required (tons)	6 513	3 784
Volume required (m ³)	$3.6 imes10^3$	$2.5 imes10^3$
Cost (M\$)	2.80	0.19

Cold

tank

Hot

tank

HX

Solar radiation

Solar

receiver

Brandenburg University of Technology Cottbus - Senftenberg

- Natural abundance of desert sand
- Costless local material
- Non corrosive and highly stable
- Sand stable up to 1000C

Near Sea more Calcium Carbonate

Fluidized-bed Catalytic Cracker (FCC)

- Greater homogenisation
- Greater uniform outlet temperatures
- Higher heat transfer rates
- Increase in power production
- Increase in power cycle efficiency

Computational fluid dynamics (CFD) was used to model a two-phase fluid flow in a fluidised bed system, where the desert sand constitutes the TES material and HTF the working fluid

The steps adopted to **optimize mass flow** and **heat transfer rate** were:

- A circulating fluidised bed as the **heat exchanger**, TES material (desert sand) and the HTF (air)
- A solar receiver to reheat the sand

This design incorporate a solution to **minimise the pumping pressure costs** of the increased velocity required to circulate the sand.

Brandenburg

University of Technology

Material	Density (kg⋅m⁻³)	Sp. Heat (J·kg ⁻¹ ·K ⁻¹)	Thermal Cond. (W·m ⁻¹ ·K ⁻¹)
Desert Sand	2650	755	0.242

- Air was used as the initial HTF
- Three velocity values of Air were initially analysed, 1.5, 1.75, and 2 m·s⁻¹ to obtain the optimum mass flow rate
- The gases below were introduced in the simulation to analyse their **heat transfer characteristics** and to identify the optimum HTF.

Caa	Density	Velocity	Specific Heat	Mass flow rate
Gas	(kg⋅m⁻³)	(m⋅s⁻¹)	(J⋅kg ⁻¹ ⋅K ⁻¹)	(kg⋅s⁻¹)
Air	1.23	1.75	1.006	1.071
Argon	1.62	1.32	0.526	1.071
Nitrogen	1.14	1.88	1.041	1.071
Carbon Dioxide	1.79	1.20	0.840	1.071

The gas mass flow rate passing through the bed was modified to observe its effect on the fluidisation process, and to optimise the heat capacity of the gas at outlet conditions.

The three superficial gas velocities used were $v_g = 1.5, 1.75$ and 2 m·s⁻¹ corresponding to air mass flow rates of $\dot{m}_g = 0.92, 1.07$, and 1.23 kg·s⁻¹ respectively.

In terms of hydrodynamics, the **ideal range** of values for the mass flow rate lie between **1.07 and 1.23 kg·s**⁻¹

Pseudo-steady fluidisation conditions unfold at flow time t_{flow} =2 s.

- The effect of the mass flow rate on the transient evolution of the gas temperature at outlet conditions has been studied
- All flowrates produce similar outlet temperatures
- Although little difference between the three ($\approx 2\%$ with respect to the temperature change along the device), the greatest temperatures are observed at $\dot{m}_g = 0.92 \text{ kg} \cdot \text{s}^{-1}$

All HTF produce similar outlet temperatures

b-tu Brandenburg University of Technology Cottbus - Senftenberg

Increasing the mass flow rate will slightly decrease the outlet temperature. However, the slightly higher temperature of the lowest mass flow rate is not large enough to produce a higher power output.

As shown the gas used as the HTF has a clear effect on the temperature attained by the solid phase:

Carbon dioxide produces a more stable solid phase temperature and a more uniform streamline

Carbon dioxide has given the best results regarding stability and power output, but is it feasible option from the economic point of view

The results show that for a mass flow rate of 1.07 kg·s⁻¹

Net Profit $[\pounds \cdot h^{-1}] = Cost of Power Consumed - Profit of heat transferred to HTF$

For carbon dioxide, the cost of circulating the gas represented 0.8% of the profit associated to the enthalpy change.

Gas	Power consumed [kW]	Power produced [kW]	Cost of power consumed [£·h ⁻¹]	Profit of power produced [£⋅h⁻¹]	Net profit [£·h ⁻¹]
Air	17.96	955.83	2.24	119.47	117.23
Ar	11.35	861.04	1.42	107.62	106.2
N ₂	17.20	974.86	2.15	121.85	119.7
	8.28	1031.32	1.03	128.91	127.88

Synthesis and characterisation of *n*-octacosane@silica

To potentially stabilize the power output of the conceptual concentrated solar power design, an encapsulated material with silica shell and a melting n-octacosane core was proposed.

Material	Density (kg⋅m⁻³)	Sp. Heat (kJ·kg ⁻¹ ·K ⁻¹)	Thermal Cond. (W·m ⁻¹ ·K ⁻¹)
Desert Sand	2650	755	0.242
n-octacosane	807	1347	0.796

https://doi.org/10.1002/er.5039

The innovation:

Continuous circulating fluidised bed solar receiver dual heat exchanger

Brandenburg

University of Technology Cottbus - Senftenberg

Heliostat Field							
Reflective area	1,216,213 n	n ²	Site improveme	ent cost	16.00	\$/m ²	\$ 19,459,414.00
				ald cost	145.00	¢ /m ²	
			Heliostat field co	eld COSt	143.00	\$/111 ¢	\$ 175 250 044 00
Tower			Heliostat field co		0.00	\$	\$ 170,530,944.00
Tower height	200.012 n	n					
Receiver height	18.5709 n	n	Tower co	ost fixed	3,000,000.00	\$	
Heliostat height	12.2 n	n	Tower cost scaling ex	rponent	0.0113		\$ 27,736,738.00
Receiver							
Receiver area	1036.61 n	n²	Receiver referen	nce cost	103,000,000.00	\$	
			Receiver referen	nce area	1571	m²	
		F	Receiver cost scaling ex	kponent	0.7		\$ 76,991,896.00
Thermal Energy Storage	2604 17 1414/	h.+	Thormal on orgu store	an cost	24.00	¢ (IAA/b+	\$ 64 660 106 00
Storage capacity	2094.17	m	mermai energy stora	ige cost	24.00	\$/KVVIIL	\$ 04,000,190.00
Cycle gross capacity	111	ЛWe	Fossil back	cup cost	0.00	\$/kWe	\$ 0.00
			Balance of pla	ant cost	340.00	\$/kWe	\$ 37,740,000.00
			Power cy	cle cost	1,100.00	\$/kWe	\$ 122,100,000.00
						Subtotal	\$ 525,039,168.00
Contingency			<i>C</i>	-	7 0/ -6-		6 26 752 744 00
Contingency			Contingency cos	t	7 % of s	ubtotal	\$ 36,752,744.00
Contingency			Contingency cos	t	7 % of s Total d	ubtotal	\$ 36,752,744.00 \$ 561,791,936.00
Contingency			Contingency cos	t	7 % of s Total d	ubtotal	\$ 36,752,744.00 \$ 561,791,936.00
Contingency irect Capital Costs Total land area	1,726 a	acres	Contingency cos	it	7 % of s Total d	ubtotal	\$ 36,752,744.00 \$ 561,791,936.00
Contingency irect Capital Costs Total land area	1,726 a	acres \$/acre	Contingency cos Cycle net (namepla % of direct cost	itate) capacity\$/We	7 % of s Total d 100 N	ubtotal	\$ 36,752,744.00 \$ 561,791,936.00
Contingency irect Capital Costs Total land area EPC and owner c	1,726 a	acres \$/acre 0.00	Contingency cos Cycle net (namepla % of direct cost	tt ate) capacity \$/We 0.00	7 % of s Total d 100 N	ubtotal	\$ 36,752,744.00 \$ 561,791,936.00 \$ 73,032,952.00
Contingency irect Capital Costs Total land area EPC and owner c Total land c	1,726 a ost ost10,0	acres \$/acre 0.00 000.00	Contingency cos Cycle net (namepla % of direct cost 13 0	tt ate) capacity \$/We 0.00 0.00	7 % of s Total d	ubtotal irect cost 1We \$ 0.00 0.00	\$ 36,752,744.00 \$ 561,791,936.00 \$ 73,032,952.00 \$ 17,259,732.00
Contingency irect Capital Costs Total land area EPC and owner c Total land c Sales Tax	1,726 a	acres \$/acre 0.00 000.00	Contingency cos Cycle net (namepla % of direct cost 13 0	t ate) capacity \$/We 0.00 0.00	7 % of s Total d	ubtotal irect cost ////////////////////////////////////	\$ 36,752,744.00 \$ 561,791,936.00 \$ 73,032,952.00 \$ 17,259,732.00
Contingency irect Capital Costs Total land area EPC and owner c Total land c Sales Tax Sales tax basi	1,726 a ost ost10,0	acres \$/acre 0.00 000.00 80 %	Contingency cos Cycle net (namepla % of direct cost 13 0 0	t ate) capacity \$/We 0.00 0.00 0.00	7 % of s Total d 100 N	ubtotal	\$ 36,752,744.00 \$ 561,791,936.00 \$ 73,032,952.00 \$ 17,259,732.00 \$ 22,471,678.00
Contingency irect Capital Costs Total land area EPC and owner o Total land o Sales Tax Sales tax basi	1,726 a ost ost 10,0	acres \$/acre 0.00 000.00 80 %	Contingency cos Cycle net (namepla % of direct cost 13 0 0 of direct cost S	t ate) capacity \$/We 0.00 0.00 iales tax rate	7 % of s Total d 100 M 5 % Total ind	ubtotal irect cost 4We \$ 0.00 0.00 5 irect cost irect cost	\$ 36,752,744.00 \$ 561,791,936.00 \$ 73,032,952.00 \$ 17,259,732.00 \$ 22,471,678.00 \$ 112,764,360.00
Contingency irect Capital Costs Total land area EPC and owner c Total land costs Sales Tax Sales tax basi cal Installed Costs	1,726]a ost ost 10,0	acres \$/acre 0.00 000.00 80 %	Contingency cos Cycle net (namepla % of direct cost 13 0 0 of direct cost S	t ate) capacity \$/We 0.00 0.00 ijales tax rate	7 % of s Total d 100 N 5 % Total ind	ubtotal irect cost WWe \$ 0.00 0.00 irect cost irect cost	\$ 36,752,744.00 \$ 561,791,936.00 \$ 73,032,952.00 \$ 17,259,732.00 \$ 22,471,678.00 \$ 112,764,360.00
Contingency lirect Capital Costs Total land area EPC and owner c Total land cost Sales Tax Sales tax basi tal Installed Costs tal installed cost excludes	1,726 a ost ost 10,0 is any financing c	acres \$/acre 0.00 000.00 80 %	Contingency cos Cycle net (namepla % of direct cost 13 0 0 of direct cost S	t ate) capacity \$/We 0.00 0.00 ijales tax rate	7 % of s Total d 100 N 5 % Total ind	ubtotal irect cost WWe \$ 0.00 0.00 irect cost irect cost alled cost	\$ 36,752,744.00 \$ 561,791,936.00 \$ 73,032,952.00 \$ 17,259,732.00 \$ 22,471,678.00 \$ 112,764,360.00 \$ 674,556,288.00 \$ 674,556,288.00
Contingency irect Capital Costs Total land area EPC and owner or Total land cost Sales Tax Sales tax basi cal Installed Costs tal installed cost excludes im the Financing input pag	1,726 a ost ost 10,0 is any financing co e.	acres \$/acre 0.00 000.00 80 % osts	Contingency cos Cycle net (namepla % of direct cost 13 0 of direct cost S	t t t t t t t t t t t t t t t t t t t	7 % of s Total d 100 N 5 % Total ind	ubtotal irect cost We \$ 0.00 0.00 irect cost irect cost alled cost city (\$KW0)	\$ 36,752,744.00 \$ 561,791,936.00 \$ 73,032,952.00 \$ 17,259,732.00 \$ 22,471,678.00 \$ 112,764,360.00 \$ 674,556,288.00 \$ 674,556,288.00 \$ 674,556,288.00
Contingency irect Capital Costs Total land area EPC and owner or Total land cost Sales Tax Sales tax basi al Installed Costs tal installed cost excludes im the Financing input pag	1,726 a ost ost 10,0 is any financing co e.	acres \$/acre 0.00 000.00 80 % osts	Contingency cos Cycle net (namepla % of direct cost 13 0 of direct cost S Estimated	t t t t t t t t t t t t t t t t t t t	7 % of s Total d 100 N 5 % Total ind Total inst st per net capa	ubtotal irect cost We \$ 0.00 0.00 irect cost irect cost alled cost city (\$/kW)	\$ 36,752,744.00 \$ 561,791,936.00 \$ 73,032,952.00 \$ 17,259,732.00 \$ 22,471,678.00 \$ 112,764,360.00 \$ 674,556,288.00 \$ 674,556,288.00 \$ 6,752.32
Contingency irect Capital Costs Total land area EPC and owner or Total land cost Sales Tax Sales tax basis ital Installed Costs ital installed Costs ital installed cost excludes im the Financing input pager eration and Maintenance	1,726 a ost	Icres \$/acre 0.00 000.00 80 %	Contingency cos Cycle net (namepla % of direct cost 13 0 of direct cost S Estimated	t ate) capacity \$/We 0.00 0.00 iiales tax rate	7 % of s Total d 100 N 5 % Total ind Total inst st per net capa	ubtotal irect cost We \$ 0.00 0.00 irect cost alled cost alled cost	\$ 36,752,744.00 \$ 561,791,936.00 \$ 73,032,952.00 \$ 17,259,732.00 \$ 22,471,678.00 \$ 112,764,360.00 \$ 674,556,288.00 \$ 6,752.32
Contingency irect Capital Costs Total land area EPC and owner c Total land costs EVC and owner c Sales Tax Sales tax basi tal Installed Costs tal installed Costs tal installed cost excludes m the Financing input pag eration and Maintenance	1,726 a ost	Incres \$/acre 0.00 000.00 80 % osts iirst year	Contingency cos Cycle net (namepla % of direct cost 13 0 0 of direct cost S Estimated	t t t t t t t t t t t t t t t t t t t	7 % of s Total d 100 N 5 % Total ind Total inst st per net capa ovee inflation)	ubtotal irect cost We \$ 0.00 0.00 irect cost alled cost alled cost	\$ 36,752,744.00 \$ 561,791,936.00 \$ 73,032,952.00 \$ 17,259,732.00 \$ 22,471,678.00 \$ 112,764,360.00 \$ 674,556,288.00 \$ 6,752.32
Contingency irect Capital Costs Total land area EPC and owner o Total land cost Sales Tax Sales tax basi tal Installed Costs tal installed cost excludes im the Financing input pag eration and Maintenance Fixed an	1,726 a ost ost 10,0 is any financing co e. Costs F nual cost Sector	Acres \$/acre 0.00 000.00 80 % osts First year	Contingency cos Cycle net (namepla % of direct cost 13 0 of direct cost S Estimated cost 0 \$/yr	t t t t t t t t t t t t t t t t t t t	7 % of s Total d 100 N 5 % Total ind Total ind st per net capa ove inflation) In Value m	ubtotal irect cost We \$ 0.00 0.00 irect cost alled cost city (\$/kW)	\$ 36,752,744.00 \$ 561,791,936.00 \$ 73,032,952.00 \$ 17,259,732.00 \$ 22,471,678.00 \$ 112,764,360.00 \$ 112,764,360.00 \$ 674,556,288.00 \$ 6,752.32 blies both inflation
Contingency irect Capital Costs Total land area EPC and owner c Total land cost Sales Tax Sales tax basi tal Installed Costs tal installed cost excludes im the Financing input pag eration and Maintenance Fixed an Fixed cost by	1,726 a ost	xrres \$/acre 0.00 0000.00 80 % osts	Contingency cos Cycle net (namepla % of direct cost 13 0 cost Estimatec cost 0 \$/yr 66 \$/kW-yr	t t t t t t t t t t t t t t t t t t t	7 % of s Total d 100 N 5 % Total ind Total ind Total inst st per net capa ove inflation) In Value m and escala calculate c	ubtotal irect cost We \$ 0.00 0.00 irect cost irect cost alled cost city (\$/kW) bode, SAM app tion to the fin uut-vear costs	\$ 36,752,744.00 \$ 561,791,936.00 \$ 73,032,952.00 \$ 17,259,732.00 \$ 22,471,678.00 \$ 112,764,360.00 \$ 674,556,288.00 \$ 674,556,288.00 \$ 6,752.32 blies both inflation \$ year cost to I Schedule mode.
Contingency Iirect Capital Costs Total land area EPC and owner or Total land cost Sales Tax Sales tax basi tal Installed Costs tal Installed Costs tal installed cost excludes much Financing input pag eration and Maintenance Fixed an Fixed cost by Variable cost by ge	1,726 a ost	xrres \$/acre 0.00 0000.00 80 % osts	Contingency cos Cycle net (namepla % of direct cost 13 0 cost Estimatec cost 0 \$/yr 66 \$/kW-yr 3.5 \$/MWh	t t t t t t t t t t t t t t t t t t t	7 % of s Total d 100 N 5 % Total ind Total ind Total inst st per net capa ove inflation) In Value m and escala calculate c neither inf	ubtotal irect cost WWe \$ 0.00 0.00 irect cost irect cost alled cost city (\$/kW) into the fin uut-year costs lation nor escu	\$ 36,752,744.00 \$ 561,791,936.00 \$ 73,032,952.00 \$ 17,259,732.00 \$ 22,471,678.00 \$ 112,764,360.00 \$ 674,556,288.00 \$ 674,556,288.00 \$ 6,752.32 Diles both inflation \$ year cost to In Schedule mode, alation applies. See

System cost break down of a 100MW solar tower and how LCOE can be reduced using the novel design.

- Reduced mirrors required
- Lower cost of tower height and receiver cost due to non corrosive sand and air.
- Desert sand is free compared to solar salt (24 \$/kW).
- Land area cost reduction, less mirrors required.
- Lower operation and maintenance cost.

Vector Sustainable Energy Ltd - Start-up

Brandenburg University of Technology Cottbus - Senftenberg

Restricted/ Prohibited use and/or distribution of this material

- Vector Sustainable Energy Ltd is a renewable energy startup looking to commercialise newly designed low cost sustainable concentrated solar power technology (CSP)
- This technology, a patented novel solar receiver design and process for CSP
- It enables the continuous circulation and reheating of TES solid particles without mechanical aid. The use of nano/micro particle PCM as the secondary TES is also unique

Current TRL- 4 – working prototype

IUK assessors score **9.4/10** InnovateUK grant awarded to develop successful next-gen CSP prototype

Advantages

- Aim for 24-hour Energy
- Greater power cycle efficiency
- >1000° C working temperature
- Micro Particles
- Three times the energy density
- Low-cost materials
- Multiple units
- Lower capital cost
- From 10kW to limit needed
- Device HEX efficiency ~99%
- Ultra-low pressure ~ 50 mbar
- Overall system efficiency >90%

Cottbus - Senftenberg Thermochemical Latent Heat Storage

- Small heat losses •
- High energy storage density ٠
- 844 kJ kg⁻¹ Co₃O₄ •
- Available at high temperature .
- **Technical complexity**
- Medium to long term storage
- Low maturity level
 - $A + \Delta H_r \leftrightarrow B + C$
 - $Q = X n_B \Delta H_r$

Industrial Development

Sensible Heat Storage 2

- Temperature gradient 0
- Solid/liquid media •
- Molten salts (KNO₃), sand, rocks, concrete
- ca. 150 kJ kg⁻¹ (each 100 °C) 0
- •

 $Q = V \rho C_{v} \Delta T$

- Solid to liquid phase change 0
- Phase Change Materials • (PCM): salts, metal, organics
- 175 kJ kg⁻¹NaNO₃ •
- •
- •

 $Q = m\Delta h_{melting}$

Energy Storage Density

https://doi.org/10.1021/acs.chemrev.8b00315

Brandenburg

University of Technology

Brandenburg

University of Technology

https://doi.org/10.1016/j.apenergy.2019.113733

Brandenburg

University of Technology

Brandenburg

University of Technology

Brandenburg

University of Technology

https://doi.org/10.1016/j.rser.2018.09.004

Brandenburg

University of Technology

Thermochemical Hydrogen Storage

$$Me_xO_y + zH_2 \leftrightarrow Me_xO_{y-z} + zH_2O(g)$$

Metal: Ce, Cu, Fe, Mn, Ni, and W

Brandenburg

University of Technology

Thermochemical hydrogen storage: Redox reactions **b-tu** ^{Brandenburg} University of Technology Cottbus - Senftenberg

 $Me_xO_y + zH_2 \leftrightarrow Me_xO_{y-z} + zH_2O(g)$

	process conditions		energy demand		stora	age density
redox cycle	$T_{\rm red} \ (x_{\rm H_2O} > 0.1), \ ^{\circ}{\rm C}$	$T_{\rm ox} \ (x_{\rm H_2} > 0.5), \ ^{\circ}{\rm C}$	$\Delta_{ m r} H^\circ_{ m 298 \ K}$, kJ/mol $_{ m H_2}$	material cost, \$/kg _{H2}	wrt metal, (wt %) _{H2}	wrt metal oxide, (wt %) $_{\rm H_2}$
Fe ₃ O ₄ /Fe	>420	<670	38	4	4.8	3.5
ZnO/Zn	>1055	<1220	109	81	3.1	2.5
SnO_2/Sn	>365	<555	47	1001	3.4	2.7
GeO_2/Ge	>425	<750	48	36037	5.5	3.9
WO _{2.722} /W	>590	<640	39	358	3.0	2.4
MoO_2/Mo	>590	<1110	52	476	4.2	3.2
			Hydrogen sto	rage		
	$H_2 \longrightarrow Fe_3O_4 + 4H_2 \rightarrow 3Fe + 4H_2O \longrightarrow H_2O$					
			Hydrogen rel	ease		
$H_2 O \longrightarrow 3Fe + 4H_2 O \rightarrow Fe_3 O_4 + 4H_2 \longrightarrow H_2$						

https://doi.org/10.1021/acs.energyfuels.1c02615

- The Bundestag and Bundesrat adopted the gradual phase-out of coal power in July 2020
- □ Savings of more than 100 kilo tons CO₂ per day

Agora Emergiewende. 2018. A future for Lusatia: A structural change plan for the Lusatia coal-mining region

https://www.bmuv.de/en/topics/climate-adaptation/climate-protection/national-climate-policy/translate-to-english-fragen-und-antworten-zum-kohleausstieg-in-deutschland

The German Federal Government and the Federal states support the structural change in the regions affected by the coal phase-out

□ Up to €14 billion by 2038, 43% earmarked for Lusatia

Over and above this, €26 billion to be invested in research and other assistance programs

Agora Emergiewende. 2018. A future for Lusatia: A structural change plan for the Lusatia coal-mining region https://www.bmuv.de/en/topics/climate-adaptation/climate-protection/national-climate-policy/translate-to-english-fragen-und-antworten-zum-kohleausstieg-in-deutschland

- Cottbus is the largest city and the economic center of the region of Lusatia
- Lusatia comprises a region in the eastern German states of Brandenburg and Saxony, and in south-western Poland
- □ Higher urban-rural divide
- Open-cast lignite mining area

Spreng, E. 2011. Walking the line: Bilingual sorbs, emotions, and endangerment in Eastern Germany. PhD Thesis, University of Illinois https://eperinst.org/front/door/deliver/index/docld/167/file/1767_Phasing_Out_Coal.pdf https://ieefa.org/wp-content/uploads/2016/09/A-Foundation-Based-Framework-for-Phasing-Out-German-Lignite-in-Lausitz_September2016.pdf

Brandenburg

University of Technology

Thermochemical hydrogen storage: Redox reactions **b-tu** Brandenburg University of Technology Cottbus - Senftenberg

Thermochemical hydrogen storage: Redox reactions **b-tu** Brandenburg University of Technology Cottbus - Senftenberg

Restricted/ Prohibited use and/or distribution of this material

- 3D Simulations
- Optimal experimental design (OED)
- Machine learning / Data analytics
- 3D printing / additive manufacturing
- Material design
- Digital twin

"You cannot solve a problem with the same mind that created it"

Thermochemical hydrogen storage: Redox reactions **b-tu** ^{Brandenburg} University of Technology Cottbus - Senftenberg

Restricted/ Prohibited use and/or distribution of this material

From sunlight and desert sand to a sustainable society

Thermochemical hydrogen storage: Redox reactor

Energy storage as metal ammine complexes

https://doi.org/10.1016/B978-0-443-15274-0.50472-8

storage parameter	units	2020 (new)	2025 (new)	ultimate (new)
system gravimetric capacity	kW h/kg	1.5	1.8	2.2
	kg H ₂ /kg system	0.045	0.055	0.065
system volumetric capacity	kW h/L	1.0	1.3	1.7
	kg H ₂ /L system	0.030	0.040	0.050
storage system cost	\$/kW h net	10	9	8
	\$/kg H ₂	333	300	266
fuel cost	\$/gge at pump	4	4	4
durability/operability	bar (abs)	\	5	5
charging/discharging rates	min	3-5	3-5	3-5
operating ambient temperature	°C	-40/60 (sun)	-40/60 (sun)	-40/60 (sun)

https://doi.org/10.1021/acs.iecr.0c04387

Brandenburg University of Technology Cottbus - Senftenberg

b-

https://doi.org/10.1016/j.enconman.2020.113729

Characteristics	Liquid hydrogen	Ammonia
Molecular weight (g/mol)	2.016	17.03
Density (kg/m³)	70.8	682
Boiling point (°C)	-252.9	-33.34
Gravimetric H ₂ density (wt %)	100	17.8
Volumetric H_2 density (kg H_2/m^3)	70.9	120.3
Gravimetric energy density (MJ/kg)	120	21.18
Volumetric energy density (MJ/I)	8.49	14.40
H ₂ release temperature (°C)	-252.9	350 - 900
Regeneration temperature (°C)	-	400 - 600
Ignition temperature (°C)	571	651
Enthalpy change during H_2 release (kJ/mol)	0.899	30.6
Physical	High H_2 density ~ 800x volumetric H_2 density	Very high H ₂ density ~1200x volumetric H ₂ density
Infrastructure	Needs further development for large scale	Possible to utilize infrastructure currently available for propane

https://doi.org/10.1016/j.ijhydene.2022.03.101 https://doi.org/10.1016/j.cattod.2005.10.011

https://doi.org/10.1016/S1464-2859(09)70336-0

Brandenburg University of Technology Cottbus - Senftenberg

b

https://doi.org/10.1021/ja076762c

https://doi.org/10.1039/B720020J

Metal halide	Metal ammine complex	Plateau pressure (bar)	Theoretical gravimetric NH ₃ density	Standard enthalpy change (kJ/mol NH ₃)
LiCl	Li(NH ₃) ₄ Cl	1.78	61.6	-34.0
NaI	$Na(NH_3)_5I$	0.55	36.2	-
	$Mg(NH_3)Cl_2$	6.45e-09	15.2	-87.0
MgCl ₂	$Mg(NH_3)_2Cl_2$	8.04e-07	26.3	-74.8
	$Mg(NH_3)_6Cl_2$	5.00e-03	51.8	-55.6
	$Mn(NH_3)Br_2$	2.36e-07	7.3	-83.7
MnBr ₂	$Mn(NH_3)_3Br_2$	2.77e-06	13.7	-77.0
	$Mn(NH_3)_6Br_2$	0.03	32.2	-53.1
NiCl ₂	Ni(NH ₃) ₆ Cl ₂	6.00e-04	44.1	-59.2
NiI ₂	$Ni(NH_3)_6I_2$	4.00e-04	24.6	-
BaCl ₂	$Ba(NH_3)_8Cl_2$	1.27	39.6	-37.7

https://doi.org/10.1016/j.ijhydene.2020.01.145

Brandenburg University of Technology Cottbus - Senftenberg

b

 $Mg(NH_3)_6Cl_2$

NiCl₂

 $Ni(NH_3)_6Cl_2$

https://doi.org/10.1016/j.cattod.2005.10.011 https://doi.org/10.1021/ja076762c

Brandenburg University of Technology Cottbus - Senftenberg

b-ti

Material	Stored component	Reaction	Hydrogen content	Decomposition temperature (ºC)	
	·		(Wt %)	Simulated	Literature
NH ₄ CI	NH_3	$NH_4Cl \rightarrow NH_3 + HCl$	7.54	328	350
$Ca(NH_3)_8Cl_2$	NH_3	$Ca(NH_3)_8Cl_2 \rightarrow \cdots \rightarrow 8 NH_3 + CaCl_2$	9.78	-	-
Ni(NH ₃) ₆ Cl ₂	NH ₃	$Ni(NH_3)_6Cl_2 \rightarrow \cdots \rightarrow 6 NH_3 + NiCl_2$	7.83	44	79-140
NH ₄ HCO ₃	NH_3	$NH_4HCO_3 \rightarrow NH_3 + H_2O + CO_2$	6.37	69	60
Urea	NH_3	$CO(NH_2)_2 \rightarrow HNCO + NH_3$	6.71	237	133
LiBH ₄	H ₂	$LiBH_4 \rightarrow LiH + B + 1,5 H_2$	18.51	140	200

50 µm

https://doi.org/10.1007/s10973-010-1054-8

Cyclical storage and release of ammonia

Brandenburg

University of Technology

Material	Density (kg/m³)
NH ₃	0.638
NiCl ₂	3550
DIA	2310
HEX	1468

Location of the present gas-solids combination

SETUP: Detailed model not working ↔ shortcut method (cut density) Sifter gas – optimization

Equipment	Function	Specification
Mixer (solid)	Mixing excess educt with initial inlet stream	-
Mixer (gas)	Mixing excess ammonia with initial gas stream	Regulated by design specification to ensure constant gas flow at the start of simulation
Splitter	Removing released ammonia not needed for fluidization	Fixed flowrate for recycled ammonia
Compressor	Repressurizing ammonia stream after recycling	Isentropic compression to 1 bar outlet pressure

Operation:

Temperatures Pressures < 120 ^oC < 1 bar

Parameter	Unit	Target	Proposed (preliminary)
Gravimetric hydrogen density	wt. %	> 4.5	9.3
Decomposition temperature	⁰ C	Low	< 120
Reusability		High	\checkmark
Safety		Non-hazardous	\checkmark
Production cost	\$/kg H2	333	TBD

Brandenburg University of Technology Cottbus - Senftenberg

6-1

FBR

Brandenburg University of Technology Cottbus - Senftenberg

b

FBR

Brandenburg University of Technology Cottbus - Senftenberg

b-

Dynamic simulations to assess

- System stability
- Start-up & shut-down of the various cycles of storage and release
- Control strategies

Optimization of the operation

Cost analysis

From sunlight and desert sand to a sustainable society

Thermochemical hydrogen storage: Redox reactor

Energy storage as metal ammine complexes

Harvey Arellano-Garcia arellano@b-tu.de